skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "CARR, JOHN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The JWST Disk Infrared Spectral Chemistry Survey (JDISCS) aims to understand the evolution of the chemistry of inner protoplanetary disks using the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST). With a growing sample of >30 disks, the survey implements a custom method to calibrate the MIRI Medium Resolution Spectrometer (MRS) to contrasts of better than 1:300 across its 4.9–28μm spectral range. This is achieved using observations of Themis family asteroids as precise empirical reference sources. The high spectral contrast enables precise retrievals of physical parameters, searches for rare molecular species and isotopologues, and constraints on the inventories of carbon- and nitrogen-bearing species. JDISCS also offers significant improvements to the MRS wavelength and resolving power calibration. We describe the JDISCS calibrated data and demonstrate their quality using observations of the disk around the solar-mass young star FZ Tau. The FZ Tau MIRI spectrum is dominated by strong emission from warm water vapor. We show that the water and CO line emission originates from the disk surface and traces a range of gas temperatures of ∼500–1500 K. We retrieve parameters for the observed CO and H2O lines and show that they are consistent with a radial distribution represented by two temperature components. A high water abundance ofn(H2O) ∼ 10−4fills the disk surface at least out to the 350 K isotherm at 1.5 au. We search the FZ Tau environs for extended emission, detecting a large (radius of ∼300 au) ring of emission from H2gas surrounding FZ Tau, and discuss its origin. 
    more » « less
  2. SUMMARY With increasing resistance to anti-parasitic drugs, it has become more important to detect and recognize phenotypes of resistant isolates. Molecular methods of detecting resistant isolates are limited at present. Here, we introduce a microfluidic bioassay to measure phenotype using parameters of nematode locomotion. We illustrate the technique on larvae of an animal parasite Oesophagostomum dentatum. Parameters of sinusoidal motion such as propagation velocity, wavelength, wave amplitude, and oscillation frequency depended on the levamisole-sensitivity of the isolate of parasitic nematode. The levamisole-sensitive isolate (SENS) had a mean wave amplitude of 135 μ m, which was larger than 123 μ m of the levamisole-resistant isolate (LEVR). SENS had a mean wavelength of 373 μ m, which was less than 393 μ m of LEVR. The mean propagation velocity of SENS, 149 μ m s −1 , was similar to LEVR, 143 μ m s −1 . The propagation velocity of the isolates was inhibited by levamisole in a concentration-dependent manner above 0·5 μ m . The EC 50 for SENS was 3 μ m and the EC 50 for LEVR was 10 μ m . This microfluidic technology advances present-day nematode migration assays and provides a better quantification and increased drug sensitivity. It is anticipated that the bioassay will facilitate study of resistance to other anthelmintic drugs that affect locomotion. 
    more » « less